By E. Z.
| Dynamic System | Undergoes | Rate of Change of ... |
|---|---|---|
| Heat | Diffusion | Temperature |
| Wave | Propagation | Energy of Wave |
| Population | Growth/Decay | Population Size |
| Object | Motion | Displacement/Velocity |
\[\vec{F}_{net}=k\vec{v}(t)\] \[\bigtriangleup\] \[|\] \[\bigcirc\] \[|\] \[\bigtriangledown\] \[\vec{F}_{net}=- m\vec{g}\] \[\]
\[\vec{F}_{net}=m \vec{a}\]
\[k\vec{v}(t) - m\vec{g} = m \vec{a}\]
\[k {\ddot{y}}(t) - m {\dot{y}}(t) - m\vec{g} = 0\]
| # of Independent Variables | Short Name | Full Name |
|---|---|---|
| =1 | ODE | Ordinary Differential Equation |
| >1 | PDE | Partial Differential Equation |
| Name | Condition |
|---|---|
| Linear | In the form of: \[ \sum a_{n} \cdot y^{(n)} = g(x) \] |
| Non-linear | Not in the form of: \[ \sum a_{n} \cdot y^{(n)} = g(x) \] |
A DE is said to be homogeneous iff it can be written in the form:
\[\ f(x, y) dy = g(x, y) dx \]
In other words iff expression below can be applied then the DE said to be homogeneous \[\ y'= \frac {y}{x} \]
Theorem
Let an open interval & consider DE:
\[\ y''+y=0 \] Show that \(\ \small sin(x) \).
Example: General solution of
\(\ \small y'=2y \),Functions that can be written in the form: