nth order lineari nonhomogenous DE: \[\ y^{(n)}+p_1(x)y^{(n-1)}+...+p_{n-1}(x)y'+p_n(x)y=q(x) \]with initial conditions : \[\ y(t_0)=y_0 \]\[\ y'(t_0)=y_1 \]...\[\ y^{n-1}(t_0)=y_{n-1} \]
If the functions \(\ p_1, p_2, ... ,p_n,q(x)\) are continous on the open interval \(\ 𝕀 \) then there exists a unique solution \(\ y=φ(x) \) for DE.
\[\ 𝒲(y_1,y_2,...,y_{n})=det \begin{bmatrix} y_1 & y_2 & ... & y_n \\ y'_1 & y_2' & ... & y_n' \\ ... & ... & ... & ... \\ y^{n-1}_1 & y^{n-1}_2 & ... & y^{n-1}_n \end{bmatrix} \]
Functions \(\ p_1,p_2,...,p_n \) are continous on the opne interval \(\ 𝕀 \), if the functions \(\ y_1,y_2,...,y_n \) are solutions to n'th order, linear, nonhomogenous DE: \(\ ∃ t_0 ∈ 𝕀 ; 𝒲(y_1,y_2,...,y_n)(t)≠0 ⇒ \text{ \small every } y_k \text{ \small that satisfies the DE in linear combinations of them} \)
\(\ 𝒲(y_1,y_2,...,y_n)(t)≠0, m∈[1,n] \) that satisfies the DE then the set {\(\ y_1,y_2,...,y_n \)} is called fundamental set of solutions.